Uloga niskotemperaturskih plazmi u proizvodnji integrisanih kola

i gde smo tu mi

Zoran lj. Petrović

U saradnji sa Draganom Marić, Nevenom Puač, Nikolom Škorom, ..., i Gordanom Malović,

Keio University Science and Technology

© elephant-pictures.net 2001

A ima li tu nauke? A ima li tu tehnike? ČEMU SLUŽE NERAVNOTEŽNE PLAZME

Non-Equilibrium Cold-Non-Thermal Te>>Ti=Tg 293K

Equilibrium

Thermal

7000K

Ге=Ti=Tg

Treatment Target - the Floating Electrode

FE-DBD Insulated Electrode

LTPSE: ROBUST SCIENCE, SOCIETAL BENEFIT

- 01-Plasma TV
- 02-Plasma-coated jet turbine blades
- 03-Plasma-manufactured LEDs in panel
- 04—Diamondlike plasma CVD eyeplass coating
- 05-Plasma ion-implanted artificial hip
- 06-Plasma laser-cut cleth
- 07-Plasma HID headlamps
- 08-Plasma-produced H, in fuel cell

- 09-Plasma-aided combustion
- 10-Plasma mutter
- 11-Plasma coone water purification
- 12—Plasme-deposited LCD screen 13—Plasme-deposited silicon for
- solar cells 14—Plasma-processed microelectronics
- 15—Plasma-sterilization in pharmaceutical production

- 16-Plasma-treated polymers
- 17-Plasma-treated textiles
- 18-Plasma-treated heart stent
- 19—Plasma-deposited diffusion barriers for containers
- 20-Plasma-sputtered window glazing
- 21-Compact fuorescent plasma lamp

• Operating premise:

LTPSE has a history and future of robust, interdisciplinary science challenges whose resolution provides immediate and long term societal benefit.

Plasma 2010: Low Temperature Plasma Science and Engineering

Advisers to the Nation on Science, Engineering, and Medicine

THE NATIONAL ACADEMIES

Market for Plasma treatment

- Bio-medical
- Sterilization
- Textile
- Plastics
- \delta Solar
- 💩 Glass
- Automotive, Aeronautical, ...
- Multiple 100Mi\$ markets, several growing at more than 20%/year.

KOJE SU TEHNOLOGIJE NEOPHODNE KOJE SU TEHNOLOGIJE NA FRONTU MINIJATURIZACIJE KAKO NAPRAVITI INTEGRISANO KOLO

MOORE OV ZAKON

Proizvodnja integrisanih kola

Nanošenje tankih slojeva

Modifikovanje osobina materijalaimplantacija

Uklanjanje foto rezista

> Plazma nagrizanje

Izvori svetlosti

REMOVABLE STORAGE

5 Megabytes ... \$120,000

65,536 Megabytes...\$60

Које су границе?

-H. Iwai, Microelectronic Engineering 86, 1520-1528 (2009)

Zašto neravnotežne, Zašto RF plazme KAKO PROIZVESTI NERAVNOTEŽNU PLAZMU IZVORI PLAZME

Unique properties of LTP

- Ion and fast neutral Impact at Surface
- Ion current density ~ 10 mA cm⁻² (10¹⁷ ions cm⁻² s⁻¹);
- time between impacts on area of ~ 1 nm² is about 10-3 s.
- Energy of single impact dissipates to background heat in ~ 10⁻¹² s
- Conclusion: ion impacts dissipate energy long before another ion hits nearby: impacts are isolated
- Single Ion/Fast Neutral Impact at Surface: Peak and Mean Power Deposited
- Ion energy ~ 100 eV, deposited in 1 nm² and dissipating in ~ 10^{-12} s
- Peak power density dissipated by single ion impact: ~ 10⁹ W cm⁻²
- But for 10¹⁷ ions cm⁻² s⁻¹ @ 100 eV: average power density ~ 1 W/cm²
- Peak power is large: chemical bonds broken easily at surfaces
- Average power is modest: easily removed, e.g., from wafer backside
- Strong Gradients in time and space near surface
- Dramatic surface chemistry at low temperature: First key to LTP uniqueness

Unique properties of LTP2

- Sheaths form near surface naturally due to mass differences between electrons and ions
- These high field regions conveniently accelerateions, often with no collisions, to allow (nearly) normal incidence impacts at surfaces, converting thepotential energy in sheath into kinetic energy at the surface
- Collisionless at fairly high pressure if sheath thickness < λ_{mfp}
- Energetic ion impact at normal incidence: Second key to LTP uniqueness
- Neutral, chemically active radicals are of coursecreated in large numbers by electron-impact dissociation in molecular gas plasma
- Surface flux scales with pressure (density) higher neutral gas pressure allows greater fluxes of radicals, increasing processing rates
- Well known that individual effects of ions and neutrals can be dramatically altered when both impact surfaces:
- SYNERGY third and perhaps most important key to LTP uniqueness

Strong fields at the surface, liquid, organic materials, charging of the organelles , ...

Наши ??? Плазма извори- KEIO Uni.

ІСР индуктивно спрегнута плазма

KOJE SU TEHNOLOGIJE NEOPHODNE KOJE SU TEHNOLOGIJE NA FRONTU MINIJATURIZACIJE KAKO NAPRAVITI INTEGRISANO KOLO

PLASMA ETCHING (PLAZMA NAGRIZANJE)

сана кола-транзистори и интерк

NEC

Термалне плазме- течности

• Ion and neutral syneroism is

Anisotropic etching Japan 1970s Hasekawa

John Coburn Harold Winter: mechanism

• Ion and neutral synergism is critically important in plasma enhanced etching surface reactions

Semiconductor Mfg Market

Plasma Etch: 3-5 Bi\$ / year Oxide -- Growing with metal layers Silicon -- Const, but increasing value Plasma CVD: 5-10 Bi\$ / year Low-K ILD -- Growing with metal layers So, how do we get our cut? 1% is 80 Mi\$ / year Wealth-Generation-Company

Largely, existing products based on 15– year–old technology

Minimum Entry Requirements

Chamber matching
Process repeatability

Da li smo mi tu nešto doprineli???

KAKO OBEZBEDITI KONTROLU UZ MODELOVANJE, KAKO KONRTROLISATI PLAZMU KAKO SMANJITI BROJ GREŠAKA ZAHTEVI PRED PLAZMA FIZIKOM ISTRAŽIVANJE PROIZVODNJA

CCP-experiment for 2D-t OES CT

N. Nakano, N.Shimura, **Z.Lj.Petrović** and T.MakabePhys. Rev. E. **49** (1994) 4455

CCP: models and experiments

FIG. 1. Schematic diagram of experimental apparatus and systems.

1 why

University of Michigan Institute for Plasma Science & Engr.

': models and experiments

Uloga dvostrukih slojeva Hemija SF6 plazme Uloga metastabila Ar Absolutna optička Emisiona spektroskopija Kompleksni RC model Impulsni rad

1 why

Schematic diagram of the pulsed twofrequency capacitively coupled plasma source developed to reduce charging defects

Dvo frekventni rad CCP_functional separation !!!!!!

Institute of Physics

aspect ratio dependent etching

Topography dependent plasma etching: notching, aspect ratio dependent etching,

CHARGING OF HIGH ASPECT RATIO NANO-TRENCHIS

- J. Matsui, N.Nakano, Z.Lj.Petrović and Toshiaki Makabe, Appl. Phys. Lett. (2001);

Oštećenja tokom proizvodnje

HIGH ASPECT RATIO CONTACT (HARC) ETCHING

 Processes for HARC etching with aspect ratios > 50-100 are being developed for capacitors and through wafer vias.

- Twisting, bowing and curvature of features is randomly observed.
- NOTHING changes in the plasma over the scale of a few microns.
- What is the source of twisting and how do you fix it?

University of Michigan Institute for Plasma Science & Engr.

HEE EFFECTS on TWISTING:

- E-beam current neutralizes sufficient charge to prevent major twisting.
- Difference in etch depth results from randomness of fluxes.
- 40 mTorr, Ar/C₄F₈/O₂ = 80/15/5, 300 sccm, RF 5 kW at 10 MHz, DC 200 W.

University of Michigan Institute for Plasma Science & Engr.

Organski dielektrici nove hemije

Flare-organic polymer

- etching in N₂/H₂,N₂/NH₃ mixtures (CF radicals produced in standard CF₄
 - N radicals do not etch (C-N passivation layer)
 - •H isotropic etching

(a) $N_2/H_2 = 0/100$ sccm

(b) N₀/H₂ = 95/5 sccm

(c) NJ/H₂ = 100/0 sccm

J. Appl. Phys., Vol. 91, No. 5, 1 March 2002

500 nm

(d) Ny/H2 = 85/15 sccm

Ar/CF4etching of SiO2 versus H2/N2 etching of Silk

Induktivno spregnute plazme dijagnostika konstrukcija ...

Konstrukcija

Kompjuterska tomografija: Optička emisiona Laserska apsorpciona

Uloga metastabila (E-H)

Uloga elektrona u gašenju Pobuđenih stanja

Impulsni rad

Dvofrekventni rad

pressures 20-500 mTorr

Plazma čišćenje Organski dielektrici

ExB drift као извор снаге у ICP

(1)

3a-temp

$$\begin{split} P_{\theta}(t;\mathbf{I}) &= -en_{e}(r)V_{d\theta}(t,r)E_{\theta}(t,r) \propto E_{\theta}(t,r)^{2} \\ &\propto \frac{1+\cos(2\,\omega t)}{2}, \end{split}$$

$$P_{\theta}(t;\Pi) = -en_{e}(r)V_{d\mathbf{E}_{r}\times\mathbf{B}_{z}}(t,r)E_{\theta}(r,t) \propto B_{z}(t)E_{\theta}(t)$$

$$\propto -\sin(2\omega t).$$
(2)

ExB drift као извор снаге у ICP

(1)

3a-temp

$$\begin{split} P_{\theta}(t;\mathbf{l}) &= -en_{e}(r)V_{d\theta}(t,r)E_{\theta}(t,r) \propto E_{\theta}(t,r)^{2} \\ &\propto \frac{1+\cos(2\,\omega t)}{2}, \end{split}$$

 $\Pi E_{\mathcal{X}}B_{z}(t)$ $P_{\theta}(t;\Pi) = -en_{e}(r)V_{d\mathbf{E}_{r}\times\mathbf{B}_{z}}(t,r)E_{\theta}(r,t) \propto B_{z}(t)E_{\theta}(t)$ $\propto -\sin(2\omega t).$ (2)

Apart from the known and the unknown, what else is there H. Pinter Direktno povezane plazma tehnologije

IMPLANTACIJA PLAZMA ČIŠĆENJE PLAZMA ASHING (SPALJIVANJE) NANOŠENJE TANKIH SLOJEVA IZVORI SVETLOSTI

A Gde smo tu mi???

DA LI SU NAŠI (PLAZMA FIZIČARI) STRUČNJACI POTREBNI, GDE I KAKO LOKALNA RADNA SNAGA PROFIL I ZAHTEVI: JEFTINI-PRODUKTIVNI-OBRAZOVANI-NEZAHTEVNI

A Gde smo tu mi??? PITAJU SE POLITIČKE PARTIJE

DA LI MI IMAMO PERSPEKTIVE PERSPEKTIVE

fast neutral etching

no charging damage, smoother surfaces less than 1 nm roughness

massively parallel, organized manufacture compatible with industrial processes possibly a missing link for merged technologies

Scott – Phelps experiment: proof that fast neutrals are doing the excitation

J. Vac. Sci. Technol. A 16(1), Jan/Feb 1998 Fast neutrals may also contribute to secondary electron production,²⁵ sputtering,²⁶ and etching.²⁷ Being more efficient in producing excitation, fast neutrals may be more easily diagnosed than ions, including their velocity distribution function.⁶ In addition etching by fast neutrals may not suffer from limitations due to charging of the surface.²⁸

329

Neutral beam source

M. Raunilović-Radjenović, Z. Lj. Petrović et al., Particle-in-cell Modeling of a Neutral Beam Source for Material Processing In Nance cale Structures Fabrication, *Material Science Forum* 555 (2007) 47-52.

Possible Applications

High Aspect Nanocolumns: Vertical Surrounding Gate MOSFET,...

Thin Nanodisks: Floating gate memory, Single electron transistor,...

Purpose: fabricating uniform and defect-free nanostructure.

High Aspect Nanocolumns

l Onm

High aspect nanocolumn can be fabricated by simple one-step etching.

Etching condition:

Gas: Cl₂ ~10mTorr in plasma chamber Cooled to -20° C ICP power 800W, pulse modulation 50 μ s/50 μ s

Miniaturization

Year

Plasma · Process Technology

		20	10	2020		2030	
F	Products, Application	2040dimension 35nm	25nm	10nm	5nm	2.5nm	1nm
		Compound	Semiconductor Nano-scale	Logic Device	Molecular De	evice Atomic Device	
ニ		High Definition Flexible I	Display 3-Dimension Display	y Ubiquitous D	isplay faccombly	Projection in Brain	
E		Ultra Efficient Solar	Cell Super Efficient Photoel	ectric/Thermoelect	ric conversion	on New Energy Source	
no		Environmen	tal Detox Hi-Efficient Agricult	ural/Marine produc	tion Nan	o Detox Global Restoration	
		Hi-Efficient Manufac. To	ol 1 Atom-Accurate Ma	nufac. Tool C)rganic/Bi	Self Assemble Manufac	. Tool
lent	urmg logy	Engineering makes	s Seeds(Principle) to F	roduction Te	chnology		
mdo		Hi Precisi	on / Hi Productivity / Large A	rea / Stable Prod	luction Tec	hnology	
		Developmen	at for Feedback Control Tech	anology using Me	panitor and S	Simulation	
e	- t	Nevigation Assist Proces	S Tuning Pin-Point Control	Pin-Point Design		Sindadon	
e e		in an age of the state of the			. /		
Ώ	-	Monitor- ,Simulator - Fri	endly Reactor Design				
Research	Seeds	Top-down Process					
		Principle of Species Genera	tion Control Nano, µ - m scale	, Lo - Hi Pressure,	, Gas/Liquid	Solid(Surface), Phase mix	
		Principle of Surface Popotio	n 1 Atom/Molecule Control	Control of Eurotic	anal Unit Ora	anio/Rio Material	
		Monochroio Elux	Vertical/Lateral Atomically on	the lad Depo/Etch	Bio Mole	anic/Bio Material	
		monochroic Plux ,	vertical/Lateral Atomically-co	na one Deportion	BIOWION	ecular manipulation	
		Bottom-Up Process	/				
		Principle of Selective Reacti	on/Self-Assemble Clarify & R	ealize of No-defect	t / Ultra Hi-Sp	peed reaction	
			Ultimate Controlled Bean	Process for [Defect Self-h	ealing	
		Common Basic Technolog	 V Assembled films / Material 	s s	synergic Kea	action in Large area	
		Diagnostics Ultimate precis	e No Disturb, 3D Flash Diag.	Nano struct./Elec	Charact, Di	ag. Prognostic Diag.	
		Circulation 1000 and a series	the Marking and Altimotic) Al		
		Simulation Ultimate corre-	ct Multi Scaled Time/Sp	ace Flash (intuitive	e) Algorithm		
		DATABAS	E : Atom, Molecule Re	action / Surfa	ace Reac	tion / Mechanism	

Evolution in Nano-Structure Technology

